If it's not what You are looking for type in the equation solver your own equation and let us solve it.
+3y^2+y-36=0
a = 3; b = 1; c = -36;
Δ = b2-4ac
Δ = 12-4·3·(-36)
Δ = 433
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{433}}{2*3}=\frac{-1-\sqrt{433}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{433}}{2*3}=\frac{-1+\sqrt{433}}{6} $
| x=4+0.5x | | 4x+10=50x | | -6(w-1)=6w+42 | | (6x-2)/2=(7x+9)/3 | | 6(x+2)-8x=20 | | 6x−11=3x+16 | | -1/10(2x+14)-3x=-7x+9 | | h/2=-16 | | 9=v/2-10 | | x2-55x+600=0 | | -11=-7y+3(y-5) | | 5x-17=-×+7 | | -48=q | | -11=-7y+3(y-5 | | x/5+16=28 | | -20=0.3x-0.8x | | 14-7x=-(x-4)+3x | | 20/2=2u/2 | | G(-7)=5x+4 | | 10x+6=6x-18 | | 5d6d6=2d | | G(24)=5c+4 | | G(-10)=3x-9 | | 5d6d6=2d6 | | 3/4x-23=7 | | G(7)=3x-9 | | 6(2x-3)-x=4x+3 | | F(22)=3x-9 | | 5x–3+2x=7x+3 | | 1/2c-3=4 | | 5d6(d+1)=2d6 | | F(x)=5x+3/2x+4 |